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ABSTRACT Ensemble Clustering (EC), which seeks to generate a consensus clustering by integrating
multiple base clusterings, has attracted increasing attentions. However, traditional EC methods typically
have three main limitations: (1) High dimensional data present a huge challenge to ensemble clustering
methods. (2) Most EC algorithms can not use prior information, e.g., pairwise constraints, to enhance the
clustering performance. (3) Even in existing semi-supervised ensemble clusteringmethods, prior information
is not sufficiently used, e.g., only used in generating base clusterings. To alleviate these problems, we propose
Stratified Feature Sampling for Semi-Supervised Ensemble Clustering (SFS3EC). Firstly, we develop a novel
stratified feature sampling method, which can cope with high dimensional data, guarantee the diversity of
base clusterings, and reduce the risk that some features are not selected at the same time. Secondly, semi-
supervised clustering, i.e., constraint propagation, is applied to obtain base clusterings. Finally, we propose
to utilize prior information in both the base clustering generating process and the consensus process, which
guarantees that prior information is sufficiently used. We conduct a series of experiments on ten real-world
data sets to demonstrate the effectiveness of the proposed model.

INDEX TERMS Constraint propagation, ensemble clustering, high dimensional data, semi-supervised
learning, stratified feature sampling.

I. INTRODUCTION
Clustering is an essential data analysis and visualization
tool that has been used in a wide range of applications,
including document analysis, image segmentation, and image
retrieval [1], etc. Numerous clustering algorithms have been
proposed in the past decades, including k-means [2], hier-
archical clustering [3], DBSCAN [4], non-negative matrix
factorization based clustering [5], etc. Different clustering
methods provide different clustering results and it is hard
to decide which result should be used. Besides, for high
dimensional data, most traditional clustering methods fail
in obtaining good performance due to sparsity, noise, and
correlation of features.

To address the above issues, ensemble clustering [6] is
proposed to improve the performance by making use of infor-
mation from multiple base clusterings. More specifically,
an ensemble clustering method is usually superior to a single
clustering method in terms of robustness, consistency, and
stability. Ensemble clustering can be typically divided into
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two steps, i.e., generating base clusterings and integrating
these clusterings into a consensus one.

For high dimensional data, two randomization methods
called random feature sampling [7], [8] and random projec-
tion [9]–[11] are commonly used to generate different feature
subsets. However, these feature subsets do not well represent
the characteristics of the original data because randomization
methods can not explore the correlations among original fea-
tures. To address this, stratified feature sampling (SFS) [12]
is proposed. Firstly, SFS uses k-means to partition features
into several feature groups. Then, it randomly selects features
from each feature group with a same proportion to form a
feature subset. SFS has the risk that some features will not
be selected to generate the base clusterings. In this work,
we develop a novel stratified feature sampling method to
reduce such risk.

From another perspective, pairwise constraints can be used
to effectively improve the performance of traditional clus-
tering algorithms. There are usually two types of pairwise
constraints, i.e., must-link constraints and cannot-link con-
straints, which respectively indicate whether two data points
should be assigned to the same cluster or not. There are a
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number of semi-supervised clustering algorithms that have
been proposed [13]–[15]. Many of existing methods only use
pairwise constraints to generate base clusterings. By contrast,
our proposed model makes use of prior information in both
the base clustering generating process and the consensus
process.

In this paper, we propose an efficient semi-supervised
ensemble clustering model, namely Stratified Feature Sam-
pling for Semi-Supervised Ensemble Clustering (SFS3EC).
Firstly, a novel stratified feature sampling method is pro-
posed to generate feature subsets. Secondly, these feature
subsets are used to generate a set of base clusterings through
the constraint propagation method [13]. Finally, these base
clusterings are integrated into the consensus clustering. It is
worthy to notice that pairwise constraints are sufficiently
utilized in both the process of base clusterings generation and
the process of ensemble clustering. Extensive experiments are
conducted on real-world data sets to show the effectiveness of
SFS3EC.

The contributions of this paper are summarized as below:
1. A novel stratified feature sampling method is proposed

to reduce the risk that a part of features can not partici-
pate in the clustering process.

2. Pairwise constraints are adequately used in both the
process of generating base clusterings and the process
of ensemble clustering to enhance the clustering
performance.

3. Extensive experiments demonstrate the effectiveness
and efficiency of the proposed model. In addition,
parameter sensitivity analysis of the proposed model is
also provided.

The rest of paper is arranged as follows: Section 2 intro-
duces the related work. Section 3 illustrates the proposed
SFS3EC in detail. Section 4 describes the experimental set-
tings and Section 5 shows experimental results and the corre-
sponding analysis. Section 6 gives the conclusion and further
work.

II. RELATED WORK
Clustering is a technique that divides multi-dimensional
data into closely related clusters. In the past few decades,
a lot of clustering algorithms have been proposed, such as
k-means [2], DBSCAN [4], hierarchical clustering [3], mean
shift clustering [16]–[18], unsupervised deep embedding
clustering [19], non-negative matrix factorization based clus-
tering [20], multi-view spectral clustering [21], etc.

Ensemble clustering integrates multiple clustering results
into a single clustering result, with recognized advantages in
generating robust partitions and handling noises. Since the
framework of ensemble clustering was formalized by [6],
many different ensemble clustering algorithms have been
proposed, such as hierarchical ensemble clustering [22], divi-
sive clustering ensemble with automatic cluster number [23],
weighted-object ensemble clustering [24], [25], spectral
ensemble clustering based on co-association matrix [26],
stratified feature sampling ensemble clustering [12],

locally weighted ensemble clustering [27], spectral ensemble
clustering via weighted k-means [28], multiple kernel fuzzy
clustering [29], and so on.

Semi-supervised clustering utilizes a small mount of prior
knowledge such as pairwise constraints to enhance the
clustering performance. There are many semi-supervised
clustering algorithms have been proposed, e.g., constraints
k-means [30], PCKmeans [15], C-DBSCAN [31], semi-
supervised maximum margin clustering [32], exhaustive and
efficient constraint propagation [13], semi-supervised deep
embedded clustering [14], semi-supervised denpeak clus-
tering with pairwise constraints [33], semi-supervised deep
fuzzy c-mean clustering [34], etc.

However, the performance of semi-supervised clustering
methods is still not robust and stable, since it is sensitive to
the value of parameters and the order of pairwise constraints.
To address this, semi-supervised ensemble clustering, which
can further improve the robustness, stability and accuracy
of clustering results, has been emerged recently. Representa-
tivemethods includes incremental semi-supervised clustering
ensemble [35], private aggregation of teacher ensembles [36],
temporal ensemble for semi-supervised learning [37], adap-
tive ensembling of semi-supervised clustering solutions [38],
semi-supervised ensemble clustering based on selected con-
straint projection [39], etc.

III. PROPOSED APPROACH
In this section, we will elucidate the framework of Stratified
Feature Sampling for Semi-Supervised Ensemble Cluster-
ing (SFS3EC) in detail. Firstly, a novel stratified sampling
method is proposed to generate several subsets of features.
The subsets are denoted as S1, S2, . . . , Sr , where r is the
number of feature subsets and is equal to the number of base
clusterings as well. Secondly, based on spectral clustering,
the constraint propagation is used to propagate pairwise con-
straints to the whole data set and generates a number of base
clusterings, which are denoted as C1,C2, . . . ,Cr . Thirdly,
a similarity matrix is constructed by base clusterings and
then is adjusted by the constraint propagation again. Finally,
the similarity matrix is partitioned by METIS algorithm [40]
to get the final clustering result. Fig. 1 shows the process of
SFS3EC.

A. STRATIFIED FEATURE SAMPLING
Given a data set X = {x1, x2, . . . , xn}, where xi denotes an
m-dimensional data point. We propose a novel stratified fea-
ture sampling technique which firstly divides the m features
into c clusters by k-means. Then, features are selected from
each feature cluster individually to construct a feature subset.
The sampling ratio is set to the same value for all feature
groups. Suppose the sampling ratio p is equal to 0.2, then 20%
of features in each feature cluster are selected. Fig. 2 shows
the overview of stratified feature sampling.

If all features always have the equal possibility to be cho-
sen, it is of high risk that some features are sampled multiple
times while others will not be selected in all the feature
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FIGURE 1. Overview of stratified feature sampling for semi-supervised
ensemble clustering.

FIGURE 2. Overview of stratified feature sampling.

subsets. To alleviate this problem, we design a novel stratified
feature sampling method which changes the sampling proba-
bility of each feature according to the sampling history. To be
specific, when constructing the first feature subset, every
feature’s probability to be sampled is initialized to be equal.
If some features are selected in the current feature subset,
their sampling probabilities will be halved in the next turn.

Fig. 3 gives an example of how to change the sampling
probabilities in a specific feature cluster consisted of 10 fea-
tures. The size of each feature subset is 5. The numbers in
boxes is the probabilities for features to be sampled. The
blackened boxes indicate that corresponding features are
selected. At first, the probabilities are initialized equally to
be 10%. Five features are randomly sampled to form the
first feature subset, and the corresponding probabilities are
reduced to 5%. Then, all features’ probabilities are normal-
ized to add up to 1. This procedure is repeated in the second
and subsequent stratified sampling processes. After repeating
it r times, all the feature subsets are generated.
Given an m-dimensional data set, let the sampling ratio be

p and the number of feature subsets be r . If all features are
selected with the same probability, it is of probability p∗ =
(1− 1

m )
rmp that a feature is not selected in all the r sampling

rounds, and the expectation of the number of features that are
not selected ism ·p∗. For example, if p = 0.3,m = 1000, and

FIGURE 3. An example of stratified feature sampling.

r = 10, it is expected that 49.71 features will not have any
impact on the clustering results.

By contrast, according to our feature sampling strategy,
the features that are not selected in many successive rounds
will be the most likely being selected of all the features in
the next round. It is expected that the number of unselected
features in all r rounds will be reduced.

To verify this, we have done experiments to simulate these
two sampling methods. Here, we set p = 0.3, m = 1000,
and r = 10. The two sampling methods are applied for 100
independent runs. The average number of unselected features
in all the 10 sampling rounds is recorded. The average num-
ber of unselected features of the random sampling method
is 48.85, while that of our method is only 4.17, which is
greatly reduced.

B. GENERATING BASE CLUSTERINGS
1) CONSTRAINT MATRIX
A form of commonly used semi-supervised information is
called pairwise constraints. Must-link constraints and cannot-
link constraints are two types of pairwise constraints, which
indicate whether two data points should be assigned to the
same cluster or not respectively. We define a set of must-link
constraints as M = {(xi, xj) : yi = yj, 1 ≤ i, j ≤ n} and
a set of cannot-link constraints as C = {(xi, xj) : yi 6= yj,
1 ≤ i, j ≤ n}, where yi is the ground-truth label of xi. Then,
the constraint matrix O = {oij}n×n is defined as:

O =


+1, (xi, xj) ∈ M
−1, (xi, xj) ∈ C
0, otherwise

(1)
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2) SIMILARITY MATRIX
Then, we define a similarity matrix as E = {eij}n∗n for every
feature subset, where eij represents the similarity between
xi and xj. It is formulated as:

eij =

{
lij, if xi ∈ Nk (xj) or xj ∈ Nk (xi)
0, otherwise

(2)

lij = exp(−
‖xi − xj‖2

d
2 ) (3)

where Nk (xi) denotes the k-nearest neighbours of xi and
d is the average Euclidean distance from every point to its
k-nearest neighbor.

3) CONSTRAINT PROPAGATION
Constraint propagation [13] utilizes pairwise constraints to
adjust the similarity matrix E for each base clustering. Then,
the adjusted similarity matrix is used in spectral clustering.
First, L is defined as a normalized graph Laplacian of E .
Second, a propagation matrix is defined as F = {fij}n×n,
where |fij| ≤ 1. F is initialized as the constraint matrix O.

Constraint propagation can be divided into vertical prop-
agation and horizontal propagation. According to [13], con-
straint propagation can be performed in two directions at the
same time as following:

min
F

1
2
‖F − O‖2F +

µ

2
tr(FTLF + FLFT ) (4)

where µ > 0 is a regularization parameter, tr is the trace of a
matrix.

The closed-form solution F∗ = {f ∗ij }n×n is formulated as
follows [13]:

F∗ = (1− β)2(1− βL)−1O(I − βL)−1 (5)

where β = µ/(µ+ 1) and L = I − L.

Then, F∗ is normalized by f̃ ∗ij =
f ∗ij

maxi′,j′
∣∣∣f ∗i′j′ ∣∣∣ . F̃∗ will be

further used to adjust the similarity matrix E as follows:

eij =

{
1− (1− f̃ ∗ij )(1− eij), f̃ ∗ij ≥ 0

(1+ f̃ ∗ij )eij, f̃ ∗ij < 0
(6)

Finally, spectral clustering (which is normalized according
to Shi and Malik [41]) makes use of the adjusted similarity
matrix E to generate a base clustering. In this way, all the r
base clusterings C1,C2, ...,Cr can be generated.

C. CONSENSUS CLUSTERING WITH CONSTRAINT
PROPAGATION
After getting r base clusterings, we need to incorporate them
into one final clustering result. Firstly, a hypergraph H is
built.

When a hypergraph is constructed, a similarity matrix R
could be constructed as:

R =
1
r
HHT (7)

where r is the number of base clusterings.

Matrix R contains all the information uncovered by dif-
ferent single clustering results. Traditionally, R is directly
used to produce the final ensemble clustering. By contrast,
in our method, R is refined with prior knowledge, i.e., pair-
wise constraints. Concretely, we use constraint propagation
to obtain a refined R with pairwise constraints. Then, a well-
known graph partition algorithm called METIS is applied to
partition the adjusted similarity matrix R to generate our final
clustering result.

IV. EXPERIMENTAL SETUP
A. DATA SETS
We evaluate the performance of the comparing methods on
10 real-world data sets. Table 1 gives an overview of these
data sets, where AustralianCredit, Biodeg (QSAR biodegra-
dation), CNAE-9, Iris, and Protein are from UCI machine
learning repository.1 Brain and Colon are gene expression
data sets.2 ORL-32 × 32 and Yale-32 × 32 are popular
face databases.3 TwoLeadECG is a time series data set.4

Every feature is normalized to have zero mean value and unit
variance. The ground-truth labels of each data set are used to
generate pairwise constraints and to evaluate the performance
of clustering algorithms.

TABLE 1. Data sets used in the experiment (n is the number of data
points and m is the number of features).

B. COMPARING METHODS
The following clustering methods are tested in the
experiments:
1. k-means: k-means clustering [2].
2. SFSEC: Stratified feature sampling ensemble cluster-

ing [12], which uses stratified feature sampling (SFS)
to generate base clusterings, and then adopts three con-
sensus functions called CSPA, MCLA and HBGF [6] to
generate the final clustering result.

3. E2CP: Exhaustive and efficient constraint propaga-
tion [13], which is a single semi-supervised clustering
algorithm with constraint propagation.

4. ISSCE: Incremental semi-supervised clustering ensem-
ble [35], a semi-supervised clustering ensemble
algorithm, which designs an incremental ensemble

1https://archive.ics.uci.edu/ml/index.php.
2https://stat.ethz.ch/~dettling/bagboost.html.
3http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
4https://www.cs.ucr.edu/~eamonn/time_series_data/.

128672 VOLUME 7, 2019



J. Tian et al.: SFS3EC

TABLE 2. Comparison against multiple methods with respected to NMI.

TABLE 3. Comparison against multiple methods with respected to ARI.

member selection process to remove redundant ensem-
ble members.

5. SFS3EC∗: It is almost identical to the proposed SFS3EC
except that pairwise constraints are not used in the con-
sensus step.

6. SFS3EC: The proposed stratified feature sampling for
semi-supervised ensemble clustering method.

C. PARAMETERS SETTING
All of the experiments are implemented on a 64-bit Microsoft
Windows machine with 8 GB memory and Intel Core
i5-8250U CPU of 1.60 GHz processing speed. Except for
SFSEC and k-means that do not use pairwise constraints,
all the other algorithms use the same pairwise constraints in
an independent run. The ratio of feature sampling (p) is set
to [0.1, 0.2, 0.3, 0.4, 0.5]. According to [35], the k of the
k-nearest neighbor is set to 10. The number of feature clus-
ters c is set to

√
m, where m is the number of total features.

The number of pairwise constraints nc ranges from 0.2n to
2n with each increment set to 0.2n, where n is the number of
data points. The number of base clusterings r is set to [10, 20,
30, 40, 50] and the cluster number of each base clustering as
well as the final clustering is set to the number of ground-truth
classes. Every algorithm is repeated 10 times and the average
performance evaluation will be reported.

D. CLUSTERING EVALUATION METRICS
To evaluate the performance of clustering algorithms, nor-
malized mutual information (NMI) [42] and adjusted rand
index (ARI) [42] are adopted as evaluation metrics. The NMI

and ARI values are in ranges [0, 1] and [−1, 1], respectively.
The lager the two values are, the better the clustering results
are. t-test is used to assess the statistical significance of the
results at 5% significance level.

V. RESULTS AND ANALYSIS
A. RESULTS ON REAL DATA
We set the number of pairwise constraints to n, the number of
base clusterings to 20, and the ratio of feature sampling to 0.3.
Table 2 and Table 3 show the clustering results w.r.t. NMI and
ARI, respectively. In each row of Table 2 and Table 3, the best
and comparable results are highlighted in boldface. Table 4
evaluates the time complexity of our method, where the
smaller running time is highlighted in boldface in each row.

TABLE 4. The comparison of average execution time (second) between
SFS3EC and ISSCE (the better value is highlighted in boldface).

Several interesting observations can be obtained from
Tables 2 - 4. 1) No matter which consensus function is used
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FIGURE 4. Sensitivity analysis of (a) the number of base clusterings,
(b) the ratio of feature sampling, and (c) the number of pairwise
constraints.

by SFSEC, its performance is relatively poor. This indi-
cates that the semi-supervised information could significantly
promote the clustering performance. 2) k-means and E2CP
generally lose to ISSCE and SFS3EC, verifying the effective-
ness of ensemble clustering. 3) Both our proposed SFS3EC
and ISSCE are semi-supervised ensemble clustering methods
which utilize the prior information. However, ISSCE is much
more time consuming than SFS3EC, as shown in Table 4.
In addition, according to Table 2 and 3, the performance
of SFS3EC is always better than or comparable with that
of ISSCE. 4) SFS3EC∗ is capable of generating cluster-
ing results with sufficient performance on most data sets.
SFS3EC can further improve the performance of SFS3EC∗,
especially on Biodeg, CNAE-9, and Protein. It indicates that
the usage of pairwise constraints in the consensus process
could improve the performance of semi-supervised ensemble
clustering. In summary, SFS3EC generally generates the best
clustering results in an efficient way.

B. SENSITIVITY ANALYSIS
In this section, we analyze the sensitivity of SFS3EC w.r.t.
the number of pairwise constraints (nc), the number of base
clusterings (r), and the ratio of feature sampling (p) on
AustralianCredit, ORL-32 × 32, and Yale-32 × 32. The
corresponding results are shown in Fig. 4.

The sensitivity analysis of r is tested with nc and p set to
n and 0.3. It is shown from Fig. 4(a) that the performance
of SFS3EC generally grows as r increases in the begin-
ning. Then, the performance becomes stable when r is large
enough, i.e., r > 20. Considering the trade-off between time
complexity and performance, it is suggested that r should be
set in range [20, 30].

Then, we test the sensitivity of the ratio of feature sam-
pling p when nc = n and r = 20. The results are given
in Fig. 4(b). SFS3EC performs stably in a wide range of p
on ORL-32 × 32 and Yale-32 × 32. On AustralianCredit,
the performance grows firstly as p increases to 0.3 and
declines as p continues to increase. The main reason is that
a larger number of features for each base clustering could
enhance its performance. However, as this number contin-
ues to increase, the diversity of base clusterings is reduced
and noisy features might participate more in the clustering
process, leading to negative impact on the ensemble cluster-
ing performance. As a consequence, the recommended value
for p is 0.3.

Finally, we analyze the sensitivity of nc with r and p set to
20 and 0.3, respectively. As shown in Fig. 4(c), the cluster-
ing performance of SFS3EC generally becomes better as nc
increases on these three tested data sets, showing that more
prior information is more beneficial to the performance of
semi-supervised clustering.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a model named stratified feature
sampling for semi-supervised ensemble clustering (SFS3EC),
which develops a novel stratified feature sampling method,
and incorporates pairwise constraints into both the base clus-
terings generating process and the consensus clustering pro-
cess. The experiments demonstrate that our algorithm can
stably generates satisfied clustering results in an efficient
way. To exploit instance sampling or weighting strategy into
semi-supervised ensemble clustering is an interesting future
work.
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